

Summertime Precipitation in Finland under Recent and Projected climate

Jussi Ylhäisi¹, Hanna Tietäväinen², et al.

¹University of Helsinki, Division of Atmospheric Sciences ²Finnish Meteorological Institute, Climate Change

- In northern Europe, precipitation amounts are expected to increase with increasing temperatures in the projected future climate
- The largest fractional increase in precipitation is expected to take place in winter, whereas the increase is more modest in summertime
- Changes in summertime precipitation during the last 100 years were analyzed based on high-resolution observed data set
 - Comparison of three different data sets
- Future precipitation projections until 2100 were studied based on an ensemble of 13 RCM's

- Two study areas sized 100 x 100 km located in north-eastern (NE) and south-western (SW) part of Finland
- Climatologically different zones:
 - NE:
 - between middle- and north-boreal zones
 - continental climate
 - SW:
 - between hemi- and south-boreal zones
 - maritime influence
- Past and future monthly precipitation sums in May-September

Data and Methods

3 observational data sets

FMI grid

- Longest and highestresolution data set
- Observed monthly precipitation
- 1908-2008
- 10 x 10 km grid size

E-OBS 2.0 (Haylock *et al.*)

- Monthly values calculated from daily values
- 1961-2000
- 0.25 degree grid

CRU TS2.1 (Mitchell and Jones)

- Global monthly data
- 1961-2000
- 0.5 degree grid

Data and Methods

13 regional climate model (RCM) simulations

- provided by the EU FP6 ENSEMBLES project
- SRES emissions scenario A1B
- 0.25 degrees resolution
- 1961-2100

Simulation	Global model	Regional model
C4I-HC16	HadCM3Q0	RCA3
DMI-ARPEGE	ARPEGE	HIRHAM
DMI-ECHAM5	ECHAM5-r3	DMI-HIRHAM5
ETHZ-HC0	HadCM3Q0	CLM
ICTP-ECHAM5	ECHAM5-r3	RegCM
KNMI-ECHAM5	ECHAM5-r3	RACMO
METO-HC0	HadCM3Q0	HadRM3Q0
МЕТО-НС3	HadCM3Q3	HadRM3Q3
METO-HC16	HadCM3Q16	HadRM3Q16
MPI-ECHAM5	ECHAM5-r3	REMO
SMHI-BCM	BCM	RCA
SMHI-ECHAM5	ECHAM5-r3	RCA
SMHI-HC3	HadCM3Q3	RCA

SW

NE

Year

- Comparison of monthly precipitation sums in 1961-2000 between different data sets and the multi-model mean (MMM)
- Differences between the observed data sets are smaller in SW than in NE
- MMM overestimates precipitation, but is closer to observations in SW than NE → Better observational coverage in SW

- Precipitation trends (mm / 10 yr) in 1961-2000 according to observations and model simulations (MMM)
- Including the range of simulations (whiskers in the plot)
 - \rightarrow Range is very large because of the climate's internal variability
 - \rightarrow In every case, the observed trend does not even fit the simulation range

- PAST as observed 1908-2008 and
- FUTURE as multi-model-mean (MMM) 1961-2100
- Future MMM trends are all increasing
 - MMM is not "a realization of the real-world" but heavily smoothed

- Relative increase largest in May
- NE: Absolute increase largest in May-June → the difference between the driest and wettest summer months will decrease
- SW: Absolute increase largest in July → increasing the inter-monhtly differences in precipitation
- Smallest increase in August in both areas

Conclusions

- Most of the past precipitation trends are statistically not significant
 - During the last decades precipitation has increased in early summer (May-July) and decreased in late summer (August-September)
- Model projections for the future indicate increase in precipitation by 2100
 - In SW, increasing the difference between the wettest and driest summer months
 - In NE, vice versa
 - Very large range within the simulations
- Larger number of observation stations in the study area leads to
 - better compatibility between different observational data sets
 - smaller bias in the model simulations

- Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D. and New, M. 2008. A European daily high-resolution gridded dataset of surface temperature and precipitation. *Journal of Geophysical Research (Atmospheres)* 113, D20119.
- Mitchell, T. D. and Jones, P. D. 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. *International Journal of Climatology* 25, 693-712.