

CES 2010

Climate change and UK electricity network capacity

Lucy Cradden, Gareth Harrison University of Edinburgh

Contents

- Why is electricity network capacity important – Particularly for increased renewable energy?
- How does climate influence capacity?
- What are the projections for UK climate change?
- What effect could this have on network capacity?
- How could it be mitigated?

UK electricity system

Research on future networks including using climate scenarios

IES

- Electric current running through a wire generates heat
- Ambient conditions superimpose both heating and cooling effects, i.e.,
 - wind = cooling
 - temperature, solar radiation = heating

Network capacity (ampacity)

Too much heat causes 'sag' where minimum ground clearance is not achieved

- Limit to how much heat the wire can be exposed to
- Amount of allowable current based on ambient conditions is known as '*rating*'

How are ratings determined?

 Based on thermodynamic and heat transfer models accounting for:

How are ratings determined?

- UK network standards assume seasonal average temperatures and worst-case wind conditions, i.e. low wind speeds
 Summer → 20°C; Spring/Autumn → 9°C;
 Winter → 2°C
- Real-time monitoring ('dynamic rating') is not commonly applied but is gaining interest

Renewable energy

- UK network designed for large, centralised thermal generation
- Increased levels of renewable generation
 - 'Distributed' generation
 - Generation often in places where population is low and network is currently sparse
 - Higher levels of flow on lower voltage lines may lead to breaches of thermal limits or the need to constrain generation

Climate change

- Alteration in climate conditions from current expectations
 - Increasing temperature/solar radiation
 - Wind variations
- Need to quantify the potential effects on network capacity
 - And understand adaptation/mitigation strategies

UK climate projections

- UKCP09 UK Climate Projections 2009
- Probabilistic projections for 30-year moving periods over the next 100 years under various emissions scenarios
- Temperature and solar radiation
- Wind climate projections limited (not probabilistic)

UK climate projections

How do seasonal temperature increases impact ratings?

• Projections for change in summer mean ratings over the UK (medium emissions):

Is the impact similar over the IES whole UK?

• Changes in the summer minimum rating, i.e. worst-case conditions – max temperature:

Rating at baseline period 1961-90 (Amps)

Rating at 90% for 2050s period (Amps)

Time series

• Using the UKCP09 'weather generator' to determine temperature and solar radiation for control period and future scenario: 2050s, medium emissions

Time series

The future scenario contains around 20 times the number of 'breaches' of the static seasonal average rating, most of which occur in summer

Mitigation

- Real-time monitoring of weather conditions rather than seasonal average assumptions
- Includes detail of wind speeds allowing stretching of capacity for shipping larger amounts of wind power
- Studies have shown it can allow better utilisation of networks without large investments
- Could go some way to mitigate the effects of rising temperatures

Conclusions

- Network capacity will be stretched to accommodate new renewable generation
- Climate change introduces increased risk of reaching thermal limits due to temperature rises
- Dynamic rating solutions may provide mitigation strategy by incorporating local weather effects

Thank you! Takk!