Regional hydrological droughts in north-western Europe and associated weather types

Anne K. Fleig (1), Lena M. Tallaksen (1), Hege Hisdal (2) & David M. Hannah (3)

(1) University of Oslo, (2) Norwegian Water Resources and Energy Directorate, (3) University of Birmingham.

Bewl Reservoir in southeast England, February 2006. (Photo: Reuters)

Introduction

- "Drought is a sustained and regionally extensive occurrence of below average natural water availability" (Tallaksen & van Lanen, 2004)
- **Hydrological drought** = deficit in surface or ground water

Typical features

- develop slowly,
- become severe when they cover a large region and persist for an extended period.

Objectives

- 1. to study the characteristics of **regional** hydrological drought in north-western Europe, and
- 2. to investigate the mesoscale hydroclimatological processes leading to hydrological drought.

Focus

• on natural processes not under influence of human activities.

Hydrological drought in NW-Europe: Data

Hydrological drought in NW-Europe: Data

Regional hydrological drought

Regional Drought Area Index (RDAI)

- daily series,
- drought affected proportion of the area within one region,
 total area = sum of catchment areas in the region,
- → RDAI: 0 1.

Regional drought definition

• RDAI > 0.7

Hydrological drought: Regional streamflow drought series

ST. ST.	Anne K. Fleig et al.	"Regional hyd	drological dro	oughts and w	eather types	in north-west	ern Europe "
T. LAND	University of Oslo	Introduction	Droughts	WTs	Relations	Outlook	Summary

Hydrological drought: Regional streamflow drought series

Anne K. Fleig et al. "Regional hydrological droughts and weather types in north-western Europe " University of Oslo Introduction Droughts WTs Relations Outlook Summary

Hydrological drought: Regional streamflow drought series

Regional hydrological drought

RDAI: Regional characteristics

Years of the five most severe drought events per region

Weather types (WTs)

- simple, discrete characterization of the current atmospheric conditions over a region on the nominal scale;
- may be based on one or several meteorological variables.
- Weather type classification (WTC): the set of WTs describing (all) common atmospheric situations over a region.

Advantages

- simple,
- consider the whole region,
- strongly correlated with several, local meteorological variables,
- if based on air pressure data only:
 - better represented in climate models than precipitation.

OGWL: Objective Grosswetterlagen

- Objective WTC based on Hess-Brezowsky Grosswetterlagen,
 - developed for central Europe using expert knowledge,
- input data: MSLP and Z500 (geopotential heights),
- 29 WTs,
- WTs are characterised by **flow direction** (W, NW, N, NE,...) and **cyclonicity** (anticyclonic, cyclonic).

Determination of the period of influence: d_{reg}

- subjective selection of WTs;
- based on composites of precipitation amounts.
- \rightarrow 14 22 potentially drought supporting WTs per region

Determination of the period of influence: d_{reg}

Correlations between

- daily RDAI,
- cumulative WT-frequencies of potentially drought-supporting
 WTs over previous *n* days (*n* = 1, 15, 30, 45, 60, 90, 120, ... 330).

CES conference, Oslo, Norway, 31 May - 2 June 2010

Identification of WTs related to severe drought events Frequency anomalies (FA_{WT})

- for the five most severe droughts in each region;
- $F_{e,WT}$ frequencies of a given WT prior to and during (d_{reg}) drought event e
- *F_{WT}* average (normal) frequencies of a WT during the same period of the year for 1964–2001

$$FA_{e,WT}$$
 $FA_{e,WT} = \frac{F_{e,WT} - \mu F_{WT}}{\sigma F_{WT}}$

WTs related to severe drought events

Drought events are:

- associated to several WTs;
- mostly including different flow directions;
- different events by different WTs;
- only in DK1 and GB3 a WT is related to all five events;
- 1-5 WTs have a negative FA for all five events in one region;

WTs with a mean FA > 0 over all five drought events

		V	V		S	SW		NW		enti	ral			ľ	N			NE		E				S	E	S			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
cyclonicity	Α				Α		Α		Α	Α		Α		Α		Α		Α		Α		Α		Α		Α			
DK1																													
DK2																													
GB1																													
GB2																													
GB3																													
GB4																													

WTs with a mean FA > 0 over all five drought events

		V	V		S	W	NW		central						N			NE			Е			SE		S			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
cyclonicity	Α				Α		Α		Α	Α		Α		Α		Α		Α		Α		Α		Α		Α			
DK1																													
DK2																													
GB1																													
GB2																													
GB3																													
GB4																													

six WTs are included for all regions: mostly northern high pressure centres;

WTs with a mean FA > 0 over all five drought events

		V	V		S	W	NW		Ce	enti	ral			1	N			NE			I	Е		S	E	S			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
cyclonicity	Α				Α		Α		Α	Α		Α		Α		Α		Α		Α		Α		Α		Α			
DK1																													
DK2																													
GB1																													
GB2																													
GB3																													
GB4																													

- six WTs are related to drought in all regions: mostly northern high pressure centres;
- most important flow directions: N, E, and central; (with respect to central Europe)

Regional flow direction

 \rightarrow differ between regions: Denmark: N, NE, NW Great Britain: S, SE, SW

all regions: central high,

Summary

Regional flow direction over Denmark

Outlook: Longer term relations

Composite analysis of ocean and atmospheric fields during drought years: composites: average anomalies of a variable for a given month during drought years as compared to the long-term mean for that month.

SST anomalies in preceding months

- month with strongest SST anomaly for each region,
- difference in lag time according to regional drought response time.
 GB1: May
 GB2: May

CES conference, Oslo, Norway, 31 May - 2 June 2010

Atmospheric anomalies in preceding months

GB4: March, SST

GB4: March, specific humidity

GB4: Apr, relative humidity

Summary & Conclusions

- Regional hydrological drought characteristics vary considerably within the study region according to regional hydrogeological properties;
- regional hydrological response time, d_{reg} varies and is related to drought characteristics and hydrogeology;

→ consideration of the regional hydrological response time is important;

- Drought causing hydroclimatological processes are complex, i.e. vary between regions and individual events;
- Meridional air flow (N, S) and central highs are most frequently related to drought development.

Conclusions & Outlook

The methodology and results may be valuable for:

- the study of the hydroclimatology of historical droughts over the whole of Europe;
- monthly or seasonal drought forecasting based on large-scale ocean-atmosphere patterns by investigating possible relations between drought related WTs and larger-scale teleconnections;
- the study of future drought characteristics by analysing frequencies of drought related WTs in climate scenarios;
 - advantage of WTs: pressure is better modelled than precipitation.
 - prerequisite: hydrothermal properties of pressure based WTs are stationary during changing climatological conditions.

Acknowledgements

- the COST733 Action and Paul James, Hadley Centre Met Office, for the weather type data;
- the UK National River Flow Archive, CEH, for the British river flow data;
- the National Environmental Research Institute in Denmark for the Danish data (provided for applications in the Nordic Energy Research funded project Climate and Energy Systems to which this study is a contribution).

Anne K. Fleig et al.	"Regional hyd	drological dro	oughts and w	eather types	in north-west	ern Europe "
University of Oslo	Introduction	Droughts	WTs	Relations	Outlook	Summary

Thank you!

WTs related to severe regional droughts

WTs with a mean FA > 0 over all five drought events

		V	V		S	W	N	W		enti	ral	al N						Ν	IE	E				S	Ε	S			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
cyclonicity	Α				Α		Α		Α	Α		Α		Α		Α		Α		Α		Α		Α		Α			
DK1																													
DK2																													
GB1																													
GB2																													
GB3																													
GB4																													